
Reorganization of Functionally Connected Brain
Subnetworks in High-Functioning Autism

Enrico Glerean,1* Raj K. Pan,2 Juha Salmi,1,3 Rainer Kujala,2

Juha M. Lahnakoski,1 Ulrika Roine,1 Lauri Nummenmaa,1,4

Sami Lepp€am€aki,5,6 Taina Nieminen-von Wendt,7 Pekka Tani,6

Jari Saram€aki,2 Mikko Sams,1 and Iiro P. J€a€askel€ainen1,8

1Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
2Department of Computer Science, Aalto University, Espoo, Finland

3Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
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Abstract: Previous functional connectivity studies have found both hypo- and hyper-connectivity in
brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in func-
tional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie
containing social cues and interactions. Twenty-six subjects (13 with ASD) watched a 68-min movie
during functional magnetic resonance imaging. For each subject, we computed Pearson’s correlation
between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain
functional networks, we derived individual and group-level subnetworks using graph theory. Scaled
inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectiv-
ity structure of each subnetwork. Additional 54 individuals (27 with ASD) from the ABIDE resting-
state database were included to test the reproducibility of the results. Between-group differences were
observed in the composition of default-mode and ventro-temporal-limbic (VTL) subnetworks. The VTL
subnetwork included amygdala, striatum, thalamus, parahippocampal, fusiform, and inferior temporal
gyri. Further, VTL subnetwork similarity between subject pairs correlated significantly with similarity
of symptom gravity measured with autism quotient. This correlation was observed also within the con-
trols, and in the reproducibility dataset with ADI-R and ADOS scores. Our results highlight how the
reorganization of functional subnetworks in individuals with ASD clarifies the mixture of hypo- and
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hyper-connectivity findings. Importantly, only the functional organization of the VTL subnetwork
emerges as a marker of inter-individual similarities that co-vary with behavioral measures across all
participants. These findings suggest a pivotal role of ventro-temporal and limbic systems in autism.
Hum Brain Mapp 37:1066–1079, 2016. VC 2015 Wiley Periodicals, Inc.

Key words: autism spectrum disorder; functional connectivity; fMRI; graph theory; intersubject similar-
ity; network modularity
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INTRODUCTION

Social and communication disturbances and restricted or
repetitive behavior constitute the core symptoms in high-
functioning individuals with autism spectrum disorder
(ASD). Reduced ability in, for example, perceiving subtle
social cues and understanding the intentions of others
make social interactions and forming of social relation-
ships challenging to these individuals. Imaging and
genetic studies characterize ASD as a manifestation of
subtle abnormalities in brain connectivity in affected indi-
viduals [Hernandez et al., 2015]. In functional imaging,
what has been reported is a mix of findings from reduced
connectivity (hypoconnectivity) to increased connectivity
(hyperconnectivity; see [Maximo et al., 2014] for a recent
review). These findings vary according to population
under investigation (developing vs. adults) and scanning
paradigm (multiple types of active tasks or resting state).

Hypoconnectivity has been observed between prefrontal
and posterior brain areas [Damarla et al., 2010; Just et al.,
2007; Kennedy and Courchesne, 2008; Monk et al., 2009]
(see [Just et al., 2012] for a review), between other areas
implicated in social cognition [Ebisch et al., 2011; Gotts
et al., 2012; Kleinhans et al., 2008; Monk et al., 2010], as
well as between subcortical and cortical structures in the
sensory and motor systems [Turner et al., 2006; Villalobos
et al., 2005]. A recent large scale study [Di Martino et al.,
2014] suggested short and long distance hypoconnectivity
across the whole ASD brain, with the exception of hyper-
connectivity between subcortical and cortical structures. In
other studies, hyperconnectivity has been observed locally
in occipital [Noonan et al., 2009], frontal, and temporal
areas [Shih et al., 2010, 2011], as well as in amygdala
[Murphy et al., 2012]. Hyperconnectivity has also been
reported in large-scale cortico-cortical [Lynch et al., 2013;
Supekar et al., 2013; Uddin et al., 2013], and cortico-
subcortical networks [Di Martino et al., 2011; Nair et al.,
2013]. Majority of hyperconnectivity observations have
been in children or adolescents with ASD. In adults,
hyperconnectivity has been reported between posterior
cingulate, temporal lobe, and parahippocampal gyrus
[Monk et al., 2009] as well as between amygdala and
medial prefrontal cortex [Monk et al., 2010].

Graph-theoretical tools have been increasingly used in
the analysis of functional brain connectivity [Bullmore and
Sporns, 2009]. In such analysis, functional brain networks

are described as consisting of nodes corresponding to vox-
els or regions of interest. These nodes are connected by
links representing functional relationships as inferred from
correlations of the functional activity time series of each
pair of nodes. Patterns of functional relationships can then
be described at several levels, from the properties of indi-
vidual nodes and links (micro-level) to features of the
global network (macro-level), and the intermediate (meso-
scopic) level of subnetworks, also known as subgraphs,
modules or communities [Alexander-Bloch et al., 2012;
Bullmore and Sporns, 2009]. Similarly as in [Power et al.,
2011], we adopted the term “subnetwork” to stress the
graph-theoretical aspect of our approach.

The overall organization of a network’s links typically
reflects its function. This functional organization may not
be visible at the micro level of individual nodes and links,
or at the macro level of network summary statistics. Rather,
it is apparent at the mesoscopic level of groups of densely
interlinked nodes—subnetworks—that can be inferred from
network structure [Fortunato, 2010]. Most ASD functional
connectivity research has focused on link or node-level dif-
ferences. There are few graph theoretical ASD studies that
have adopted the mesoscopic approach, either in structural
imaging [Shi et al., 2013] or in combined structural and
functional imaging at rest [Rudie et al., 2012]. However,
whole-brain voxel-wise comparison of subnetworks of indi-
viduals with ASD and control subjects has not been real-
ized to date using graph-theoretical tools.

Finally, functional brain connectivity abnormalities in
ASD have been studied to date with subjects either not
performing any task (i.e., “resting state”) or relatively sim-
ple tasks targeting to activate specific brain networks. At
behavioral level, however, movie clips depicting various
social cues and interactions appear to be more effective
than isolated perceptual-cognitive tasks in capturing the
complex and individualistic autistic traits [Golan et al.,
2006; Klin et al., 2002]. Thus, it can be hypothesized that
observing naturalistic social and emotional stimuli such as
movies reveal the underlying functional connectivity
abnormalities more closely related to everyday social inter-
action than resting state or the focused tasks designed to
engage specific cognitive functions [Nummenmaa et al.,
2014]. Supporting this view, deviations in brain function in
autistic individuals have been recently characterized dur-
ing free viewing of movies [Hasson et al., 2009; Pantelis
et al., 2015; Salmi et al., 2013]. However, there are
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currently no reports on possible abnormalities in the con-
figuration of the large-scale functional brain-network topog-
raphy in ASD during free viewing of dynamic social
interactions. Knowledge on such abnormalities would be also
important for designing studies to test brain-to-brain dynam-
ics in two-person social interactions [Schilbach et al., 2013]

Here, we specifically hypothesized that the previously
reported mixed hypo- and hyper-connectivity is reflected
as differences in the composition of functional subnet-
works in ASD and control subjects. Furthermore, we
hypothesized that such differences co-vary with autistic
symptom severity. To specifically study alterations in func-
tional subnetworks in subjects with ASD during social
cognition, we analyzed our previously published dataset
[Salmi et al., 2013] where 13 high-functioning autistic and
13 matched-pair control subjects’ brain hemodynamic
activity was measured with fMRI during free viewing of a
drama movie containing social cues and interactions. Fur-
thermore, to test the reproducibility of our findings, we
separately analyzed 27 high functioning individuals with
ASD and 27 matched controls from the ABIDE resting
state dataset [Di Martino et al., 2014].

METHODS AND MATERIALS

Participants

The participants were 13 high functioning individuals
with ASD (mean age 29 years, S.E.M. 1.7 years, range 20–
41 years, all males) and 13 healthy male controls (mean
age 28 years, S.E.M. 2.1 years, range 19–47 years)—from
now on labeled as “neurotypical” (NT)—matched for age
and IQ (see [Salmi et al., 2013] for details). The partici-
pants with ASD filled the criteria for Asperger syndrome
based on ICD-10 criteria. To quantify where subjects of the
current study were on the autistic continuum, Autism quo-
tient (AQ) [Baron-Cohen et al., 2001], translated into Fin-
nish [Roine et al., 2013], was obtained from all
participants. AQ significantly differed (P< 1025) between
the groups with ranges 6–35 (NT), 17–43 (ASD) and mean
values of 12.5 (2.1 s.e.m.) for NT and 30.5 (2.1 s.e.m) for
ASD. Each participant gave a written informed consent
prior to the testing as a part of the study protocol
approved by the Ethics Committee of the Hospital District
of Helsinki and Uusimaa. The study was conducted in
accordance with the Helsinki Declaration.

STIMULUS

The stimulus was the Finnish feature film “The Match
Factory Girl” (Aki Kaurism€aki, 1990, length: 68 min).

MRI Data Acquisition and Preprocessing

MR imaging was performed with a Signa VH/i 3.0T
scanner using a quadrature 8-channel head coil. A total of

1,980 functional volumes were obtained, each consisting of
29 gradient-echo planar axial slices (thickness 4 mm, 1-mm
gap between five slices, TE 32 ms, TR 2,000 ms, see [Salmi
et al., 2013] for details).

Preprocessing was performed with FSL using the FEAT
pipeline: removal of first 29 volumes (corresponding to
movie titles), motion correction, 6-mm spatial smoothing,
two steps co-registration to MNI 152 2-mm template, tem-
poral filtering at 0.01–0.08 Hz. Data were then spatially
downsampled to 6-mm isotropic voxels resulting in 5,184
brain grey matter voxels. To control for head motion con-
founds, motion parameters were regressed out. We retained
all timepoints for the analysis, since all subjects had >95%
volumes under framewise displacement threshold of
0.5 mm [Power et al., 2012] and we failed to see any group
differences in mean framewise displacement (two sample t
test P 5 0.606, group means and standard errors of the
mean: NT: 0.124 6 0.011 mm, ASD: 0.130 6 0.017 mm).
However, we used the individual mean framewise dis-
placement values as a nuisance variable for group level
regression analysis [Yan et al., 2013]. Mean brain signal was
not regressed out since doing this reduces task effects [Van
Dijk et al., 2010] and can systematically bias functional net-
work comparisons [Gotts et al., 2013].

NETWORK CONSTRUCTION

For each subject we calculated Pearson’s correlation
between each pair of 6-mm isotropic voxels (nodes) time
series, resulting in a 5,184 3 5,184 adjacency matrix with
13,434,336 correlation coefficients (weighted links). A
sparse network was obtained by constructing minimum
spanning tree (MST) followed by thresholding as in
[Alexander-Bloch et al., 2010, 2012]. Network threshold
was optimized as follows. For each link density from 0.1%
(strongest 13,434 links, equivalent to retaining links with
average r> 0.88) to 100% (all �13.4 million links) the over-
lap of the resulting binarized networks was calculated
between subject pairs (Supporting Information Fig. S1).
Given two graphs thresholded at density n% (i.e., retaining
the strongest n% of all links), their overlap is given by the
number of common links divided by the total number of
links at that density. We selected the 2% density to focus
on the maximally different networks constituted by the
edges with highest correlation (r>�0.69), as this has been
suggested to provide most detailed parcellation of brain
networks [Power et al., 2011]. This corresponds with previ-
ously accepted criteria [Alexander-Bloch et al., 2012].

Computation of Individual-Subject Functional

Subnetworks

We defined each functional subnetwork as a subset of
nodes having a higher density of connections than
expected on the average. We used the “Louvain method”
[Blondel et al., 2008], which maximizes the modularity of
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the detected partitions [Newman and Girvan, 2004]. We
performed 100 optimization runs for each subject and
selected the partitions that gave the highest value of mod-
ularity. Individuals’ modularity value and number of sub-
network were also compared against mean framewise
displacement to test for possible head-motion confounds.

Group Consensus of Subnetworks

To determine differences in the structure of subnetworks
between ASD and NT, we first calculated a consensus parti-
tion for each group using a meta-clustering algorithm based
on clustering clusters [Strehl and Ghosh, 2003]. Specifically,
the set of partitions for each subject is transformed to a
hyper-graph with each subnetwork representing a hyper-
edge, i.e., an edge that can connect any number of vertices.
Related hyper-edges are then grouped and collapsed
together using METIS [Karypis and Kumar, 1998]. The
reduced number of hyper-edges was set as equal to the
maximum number of subnetworks in any of the subject’s
partitions. Each node is then assigned to the collapsed
hyper-edge where it participates most strongly. Finally, we
matched the two group consensus clustering labels with the
Hungarian algorithm [Kuhn, 1955]. The partition labels of
individual subjects were also matched with the consensus
subnetwork of their group. We then measured the group
consistency of each node by counting the fraction of sub-
jects for which the node belonged to the same subnetwork.
This reflects the extent of agreement about the subnetwork
label of the node. Our procedure is quite similar to that
described by Alexander-Bloch et al. [2012], however it is
more general as it uses consensus partitions rather than the
single most representative subject in the population.

Labelling of Functional Subnetworks

Labels of subnetworks were assigned by first computing
spatial overlap with known major subnetworks computed
for a large number of subjects as reported in [Thomas Yeo
et al., 2011] and [Power et al., 2011]. Spatial overlap is
defined as the Pearson’s correlation between the spatial
maps as in [Smith et al., 2009]. Values and details are
reported in Supporting Information Table SI. Finally, sub-
network labels were chosen manually and, when possible,
matched with the quantitative results from Supporting
Information Table SI. Furthermore, nodes were also labelled
automatically by matching each node with its correspond-
ing automatic atlas labeling (AAL) or Harvard Oxford (HO)
label. We reported AAL labels for cerebral cortical areas
and HO labels for subcortical and cerebellar areas (see Sup-
porting Information Table SII for a list of abbreviations).

Intersubject Similarity of Subnetworks

We estimated intersubject similarity for each subnetwork
using Scaled Inclusivity (SI), [Moussa et al., 2012; Samu et al.,

2014; Steen et al., 2011]. SI is a similarity measure defined for
a subject pair and for a single node, as the intersection of the
subnetworks to which the node belongs, normalized by the
size of each of the two subnetworks. Because SI is computed
for a single node, to consider the similarity across subjects at
subnetwork level we first considered the NT group consen-
sus subnetworks. Next, for a chosen subnetwork we com-
puted the median SI of all the nodes in this subnetwork for
each subject pair. This produced an intersubject similarity
matrix across all NT subjects and individuals with ASD for
the chosen subnetwork (see Fig. 1 for a schematic). Finally,
we obtained the intersubject similarity matrices for each of
the NT group subnetworks, where each element describes
the level of similarity for the specific subnetwork for the sub-
ject pair. Each similarity matrix was tested for group differen-
ces by computing difference of the means scaled by the
standard error (i.e., comparable to a t value) for the within
group similarity values. P values were computed with per-
mutation tests for all comparisons (1 million permutations).
Effect size for each group comparison was calculated with
the MES toolbox [Hentschke and St€uttgen, 2011] and we
reported values of Hedges’ g. We also tested each similarity
matrix with a model matrix based on the similarity of AQ
scores with Mantel test with one million permutations, and
the effect size reported is the correlation coefficient between
the two matrices.

Similarity between individuals’ AQ scores was com-
puted by considering separately the five domains of the
AQ score (social skills; communication skills; imagination;
attention to detail; and attention switching/tolerance of
change), so that each subject was characterized with a
five-dimensional vector of AQ subscale scores. Similarity
of AQ scores (a real value between 0 and 1) was then
derived from the Euclidean distance between the individ-
ual vectors (see Lemma 8 in [Chen et al., 2009]). This
approach has the advantage of being sensitive to differen-
tial profiles of symptoms across the subscales of AQ,
which could be missed if only global AQ score was con-
sidered. To control for head motion, we also computed a
intersubject similarity matrix based on mean framewise
displacement as a measure of intersubject similarity of
average head motion. Code used in this article is available
at https://github.com/eglerean/hfASDmodules.

Individual Microscopic Network Properties

versus Autism Quotient Score

We correlated micro-level properties of nodes and links
with individual AQ scores using Spearman correlation.
Specifically, we computed the node strength as the sum of
the weights of the links connected to a node. The signifi-
cance threshold was computed by permuting the subjects’
labels (100,000 permutations). We took the 95th percentile
of the max-statistics (for negative values, it is the 5th per-
centile of the min-statistics) to correct for multiple compar-
isons as described in [Nichols and Holmes, 2002]; i.e. for
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each permutation, we stored the maximum (minimum)
value of surrogate Spearman correlation across all nodes,
and then considered the 95th (5th) percentile as significant
threshold that controlled for multiple comparisons. This
yielded correlation thresholds of 20.480 and 0.459. We
then considered all the links in the individual networks
with the 2% link density (�0.3 million links). We com-
puted the Spearman correlation between individual AQ
and link weights. To control for multiple comparisons, we
used the false discovery rate cluster-based statistics as
described in [Han et al., 2013], which is an extension of
the Network-based Statistics method [Zalesky et al., 2010].
This yielded a threshold of 0.695 for positive AQ-link
weight correlations and of 20.650 for negative correlations
for clusters at a corrected P< 0.05 significance. For com-
pleteness we also computed macro-level network proper-
ties: mean link weight, clustering, average path length and
efficiency [Bullmore and Sporns, 2009].

Reproducibility Dataset

To test the reproducibility of the proposed intersubject
similarity of movie subnetworks predicted by the similar-

ity of the symptoms severity, we selected 27 individuals
with Autism from the ABIDE database and 27 matched
controls (see below for details on subjects selection).
Although these subjects were scanned in the resting state,
we used the group consensus NT subnetworks from the
movie watching as reference subnetworks. By considering
the reference subnetworks identified when processing
social content, we test whether the same subset of regions
showed a similar disruption at subnetwork level also dur-
ing rest. Furthermore, ABIDE subjects were diagnosed
using Autism Diagnostic Interview Revised (ADI-R) [Lord
et al., 1994] and Autism Diagnostic Observation Schedule
[Lord et al., 1989]. The reproducibility test would then
assess the validity of our findings for a different scanning
paradigm and for other diagnostic tools. Further details on
ABIDE subjects selection, preprocessing and quality con-
trol are reported in Supporting Information. For the
ABIDE subjects selection, we considered the same five
datasets used in [Hahamy et al., 2015], that is sites with
codes: “CALTECH” (n 5 19), “CMU” (n 5 14), “PITT”
(n 5 30), “UM_1” (n 5 55), “UM_2” (n 5 13) for a total of
131 ASD participants. We used version v1.0b of the ABIDE
composite phenotypic file to further restrict the ABIDE
sample to match our dataset by choosing high functioning

Figure 1.

A schematic representation of the intersubject analysis frame-

work. For two groups of subjects (bottom layer), we can com-

pute the similarity between each subject pair by using functional

brain data at the level of subnetworks (middle layer) or behav-

ioral scores (top layer). These layers are described as networks

using adjacency matrices also known in this case as intersubject

similarity matrices. Two types of statistical tests can then be run:

a group difference within a layer, in which the within groups val-

ues of the adjacency matrix are compared (bottom adjacency

matrix, where the group comparison tests whether the within

NT group similarity is higher than the within ASD group similar-

ity). The second test is the so-called Mantel test, in which the

two adjacency matrices are compared with each other by corre-

lating the corresponding values of the top off-diagonal triangle.

In the latter case, also the between group similarity values are

used making the Mantel approach more strict. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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male subjects (IQ� 100 for column FIQ, value of 1 for col-
umn SEX, a Matlab script for filtering the ABIDE database
is available at https://github.com/eglerean/hfASDmod-
ules). Furthermore we required that the subjects had to
have valid ADI-R and ADOS scores assessed by professio-
nal personnel by filtering subjects with positive values for
columns: “ADI_R_SOCIAL_TOTAL_A,” “ADI_R_VERBAL_
TOTAL_BV,” “ADI_RRB_TOTAL_C,” “ADI_R_ONSET_
TOTAL_D,” “ADI_R_RSRCH_RELIABLE,” “ADOS_MODULE,”
“ADOS_TOTAL,” “ADOS_COMM,” “ADOS_SOCIAL,”
“ADOS_STEREO_BEHAV,” “ADOS_RSRCH_RELIABLE.
“This yielded 27 subjects with IDs: 51457, 51464, 51468,
51474, 50642, 50643, 50645, 50646, 50647, 50649, 50651,
50652, 50653, 50655, 50002, 50003, 50004, 50006, 50007,
50012, 50016, 50019, 50022, 50024, 50025, 50053, 50056. The
ranges (minimum and maximum) for the scores were
ADI_R_SOCIAL_TOTAL_A: 10–27; ADI_R_VERBAL_TO-
TAL_BV: 9–22; ADI_RRB_TOTAL_C: 2–12; ADI_R_ON-
SET_TOTAL_D: 1–5; ADI_R_RSRCH_RELIABLE: 1–1;
ADOS_TOTAL: 8–19; ADOS_COMM: 2–6; ADOS_SOCIAL:
5–13; ADOS_STEREO_BEHAV: 1–6; ADOS_RSRCH_RELI-
ABLE: 1–1. Controls subjects from the ABIDE database do
not have ADI-R or ADOS scores so they cannot be
included in the mantel test analysis, however we tested for
the group difference of subnetwork consistency (ABIDE
NT subject IDs: 51488, 51489, 51478, 51492, 50666, 50657,
50660, 50664, 50658, 50668, 50667, 50659, 50665, 50663,
50047, 50058, 50037, 50051, 50044, 50060, 50032, 50041,
50050, 50040, 50042, 50048, 50031). We then preprocessed
each subject using the same preprocessing parameters as
per our dataset. Because the number of time points was
smaller than in our dataset, we applied stricter motion con-
trol techniques that is: (i) we used a 24 parameters motion
regression as explained in [Power et al., 2014]; (ii) To avoid
filtering artifacts we discarded the beginning and end of
each dataset—see [Power et al., 2014]; (iii) We regressed
out signals at ventricles, white matter and cerebral spinal
fluid masks as explained in [Power et al., 2014]; (iv) We
applied scrubbing so that we kept 125 volumes with lowest
framewise displacement for each subject. All subjects had
framewise displacement under 0.5 mm, except one subject
(50003) who had 6 time points above the 0.5 mm threshold
(maximum framewise displacement 0.57 mm). We decided
to keep this participant anyway since leaving this subject
out gave similar results in the final analysis. There was no
group difference using mean framewise displacement (two
sample t test P 5 0.700, group means and standard error of
the means NT: 0.109 6 0.007, ASD: 0.114 6 0.012). For the
intersubject analysis, we computed normalized Euclidean
distance between the joint ADI-R an ADOS scores between
each pair of ASD subjects. As the ABIDE dataset is a multi-
site dataset, we regressed out scanning site similarity from
the scaled inclusivity matrices. Also for the reproducibility
dataset, to further control for head motion during group
level analysis, we computed an intersubject similarity
matrix based on mean framewise displacement as a mea-

sure of intersubject similarity of average head motion and
tested mean framewise displacement against individuals’
modularity value and number of subnetworks.

RESULTS

Whole-brain functional connectivity analysis disclosed 12
subnetworks in the NT subjects that are depicted with
different colors on cortical surface on the left-hand side of
Figure 2. For a detailed display of each subnetwork see
Supporting Information Figure S2 or see the fully brows-
able results on NeuroVault [Gorgolewski et al., 2015] at
http://neurovault.org/collections/437/. These 12 subnet-
works consisted of (from bottom to top) (1) Default-mode
(DM), (2) Language (LAN), (3) Auditory (AUD), (4) Sali-
ence (SAL) (5) Parietal, (6) Dorsal attention (DA), (7) Senso-
rimotor (SM), (8) Visual primary (V1), (9) Ventro-temporal
limbic (VTL)—comprising subcortical areas (amygdala,
nucleus accumbens, putamen, caudate, thalamus) as well
as the anterior part of the ventral visual pathway and part
of ventro-medial prefrontal cortex, (10) precuneus, (11) cer-
ebellum, and (12) visual extrastriate (VIS).

While there were no significant between-group differen-
ces at the macroscopic level tests of mean link weight,
clustering, average path length and efficiency, the alluvial
diagram in the middle part of Figure 2 shows that these
functional subnetworks were reconfigured in subjects with
ASD: A number of brain areas that constitute each subnet-
work in NT subjects were shifted to other subnetworks in
subjects with ASD. Significant group differences between
median SI values of subject pairs were found in five of the
twelve subnetworks: DM, AUD, DA, V1, and VTL (see
Table I).

The largest group difference was in the VTL subnetwork
(P 5 8.402 3 e-10, Hedges’ g 5 1.041). In ASD subjects the
extent of VTL network was reduced so that thalamus, parts
of the orbitofrontal cortex, and posterior medial-inferior
temporal lobe structures were not consistently included in
the VTL subnetwork. On the other hand, temporal poles
(TPO) were included to a greater extent in the VTL subnet-
work in ASD than in NT subjects. Furthermore, inferior
temporal gyrus (ITG), parahippocampal gyrus (PHG) and
right amygdala formed an independent subnetwork in ASD
subjects disjoint from Putamen, Caudate and other subcorti-
cal areas in VTL (blue ASD subnetwork, Fig. 2 right).

The DM subnetwork (P 5 2.041e-05, Hedges’ g 5 0.653)
revealed a reduction in the extent of fronto-medial and
dorso-frontal areas belonging to default mode subnetwork
in ASD subjects compared with NT controls (purple ASD
subnetwork, Fig. 2 right). In ASD these were included in a
larger subnetwork together with the salience subnetwork
(anterior cingulate gyrus—ACG—, anterior insula) and
inferior frontal gyrus (IFG, yellow ASD subnetwork, Fig. 2
right). Individual modularity value and number of subnet-
works did not correlate with mean framewise displacement
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Figure 2.

Functional subnetworks and their reorganization between NT

and ASD. Functional subnetwork similarities and differences

between NT (left) and ASD (right) subjects. The subnetworks

are color-coded and projected on lateral and medial surfaces of

both hemispheres. The alluvial diagram in the middle uses the

same color-coding. The height of each ribbon representing a

subnetwork corresponds to the number of nodes that belong to

the given subnetwork. Stars indicate statistically significant group

difference: *significant at P< 0.05, see also Table I; plus signs

indicate median consistency of all nodes within a subnetwork:

1median subnetwork consistency> 0.5, 11median subnetwork

consistency> 0.75. Group consensus modules and consistency

values for each node are available at http://neurovault.org/collec-

tions/437/. Ribbons with same color show related areas parti-

tioned into similar subnetworks for both the groups. ACG:

Anterior cingulum; AMYG: Amygdala; ANG: Angular gyrus; BST:

Brainstem; CAL: Calcarine gyrus; CAU: Caudate; CUN: Cuneus;

DCG: Middle cingulum; FFG: Fusiform gyrus; HES: Heschl gyrus;

HIP: Hippocampus; IFGoperc: Opercular inferior frontal gyrus;

IFGtriang: Triangular inferior frontal gyrus; INS: Insula; IOG: Infe-

rior occipital gyrus; IPL: Inferior parietal lobule; ITG: Inferior

temporal gyrus; LING: Lingual gyrus; MFG: Middle frontal gyrus;

MOG: Middle occipital gyrus; MTG: Middle temporal gyrus;

NAcc: Nucleus accumbens; OLF: Olfactory cortex; ORBinf:

Orbital inferior frontal gyrus; ORBmid: Orbital middle frontal

gyrus; ORBsupmed: Orbital medial frontal gyrus; ORBsup:

Orbital superior frontal gyrus; PAL: Pallidum; PCG: Posterior

cingulum; PCL: Paracentra lobule; PCL: Paracentral lobule;

PCUN: Precuneus; PHG: Parahippocampal gyrus; PUT: Putamen;

PoCG: Postcentral gyrus; PreCG: Precentral gyrus; REC: Gyrus

rectus; ROL: Rolandic operculum; SFGdor: Superior frontal

gyrus; SFGmed: Medial superior frontal gyrus; SMA: Supplemen-

tary motor area; SMG: Supramarginal gyrus; SOG: Superior occi-

pital gyrus; SPG: Superior parietal lobule; STG: Superior

temporal gyrus; THA: Thalamus; TPOmid: Temporal pole (mid-

dle); TPOsup: Temporal pole (superior).
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(modularity: r_spearman 5 20.037, P 5 0.857; number of
subnetworks: r_spearman 5 20.214, P 5 0.295).

INTERSUBJECT SIMILARITY OF SUBNETWORK

STRUCTURE AND THE AQ SCORE

We found a statistically significant relationship between
intersubject similarity of subnetwork structure and AQ
scores for the VTL subnetwork (Fig. 3). Subject pairs with
more similar AQ subscale scores had more similar VTL
subnetwork SI (r 5 0.293, P 5 0.000297), independently of
their diagnosis. When NT and ASD subjects were analyzed
separately, the similarity between AQ and VTL was pres-
ent in both NT subjects (r 5 0.549, P 5 0.00922) and ASD
subjects (r 5 0.257, P 5 0.0236) and, further, this effect was
stronger in NT than ASD subjects (test of the difference
between correlation coefficients [Preacher, 2002] NT>ASD
z 5 2.168, P 5 0.0301, two tailed). When considering other
subnetworks, we failed to see any other intersubject rela-
tionships between subnetwork structure and AQ. Intersub-
ject similarity of average head motion did not correlate
with AQ similarity and did not correlate with median SI.

NODE AND LINK LEVEL RESULTS

Subjects with lower AQ scores exhibited significantly
higher node strength in ACG and medial prefrontal cortex
(MFG), dorsal part of the frontal gyrus, TPO, precuneus,
and fusiform gyrus (FFG) (Fig. 4A, peak coordinates in
Table II). Participants with higher AQ showed higher node
strength in the posterior cingulate cortex (PCG), dorsal
superior frontal gyrus (SFGdor), left IFG, and inferior pari-
etal lobule (IPL). The connections (links) between areas
that highly correlated with AQ score are reported as a

TABLE I. Group difference for NT subnetworks

ID Subnetwork name

Difference of the means
normalized with standard

error (i.e., t value)
P value (via

permutations)
Effect size for the difference

of the means Hedges’g (95% c.i.)

1 Default mode (DM) 4.126 2.041e-05a 0.653 (0.377 0.922)
2 Language (LAN) 0.789 0.218 0.204 (20.135 0.524)
3 Auditory (AUD) 4.057 3.759e-05a 0.620 (0.306 0.962)
4 Salience (SAL) 20.491 0.3124 0.348 (0.0317 0.671)
5 Parietal 20.607 0.2725 20.024 (20.33 0.285)
6 Dorsal attention (DA) 3.014 0.001565a 0.428 (0.117 0.763)
7 Sensorimotor (SM) 20.171 0.4327 20.038 (20.383 0.3)
8 Visual primary (V1) 5.788 1.265e-09a 0.537 (0.237 0.874)
9 Ventro-temporal limbic (VTL) 10.112 8.402e-10a 1.041 (0.709 1.42)
10 Precuneus 21.322 0.09558 20.219 (20.514 0.0893)
11 Cerebellum 1.059 0.1457 0.068 (20.233 0.363)
12 Visual exstrastriate (VIS) 2.238 0.0137 0.165 (20.162 0.52)

The table reports group differences for each subnetwork as differences of the mean and effect size with confidence intervals.
aSignificant with Bonferroni correction at P < 0.05.

Figure 3.

Intersubject analysis between subnetwork similarity and autistic

symptoms. Mantel test showing association between VTL sub-

network structure and autistic symptoms. Each dot is a pair of

subjects showing their subnetwork similarity with median scaled

inclusivity and behavioral similarity with AQ score vectors. Pairs

are coded based on within groups (blue NT, red AS) and across

groups (green). Mantel test results in the black interpolation line

that was performed using all data points. Mantel test results in

blue (NT) and red (ASD) interpolation lines are only for within

group values. Effect sizes are reported as correlation values and

P values were computed with permutations. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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summary connectivity matrix in Figure 4B, where nodes
were grouped into anatomical regions (summary for all
AAL regions in Supporting Information Fig. S3). Low AQ
was associated with higher functional connectivity across
both long-distance (between frontal and parietal, frontal
and occipital, as well as temporal and parietal) and within
anatomical regions (i.e., the blue squares in the main diag-
onal of Fig. 4B) such as the ACG, parahippocampal and
superior parietal gyri. Few links were stronger for subjects
with higher AQ, for example links within MFG and
SFGdor or links between FFG and middle temporal areas.

REPRODUCIBILITY: SUBNETWORK

STRUCTURE AT REST AND ADI-R/ADOS

SCORES

Also for the ABIDE’s participants, individuals’ modular-
ity and number of subnetworks did not correlate
with mean framewise displacement (modularity:
r_spearman 5 20.234, P 5 0.089; number of subnetworks:
r_spearman 5 20.081, P 5 0.561). When repeating the inter-
subject similarity analysis for the 27 ABIDE participants
with autism, we obtained similar results as those for the
within ASD group in our dataset i.e. only the VTL subnet-
work showed significant correlation between subnetwork
intersubject similarity and joint ADI-R/ADOS score simi-
larity (P 5 0.0231) with moderate effect size (r 5 0.177, Fig.
5). When testing for group differences in scaled inclusivity
for each subnetwork, we found significant differences in
DM, LAN, SAL, DA, SM, Precuneus (see Supporting Infor-
mation Table SIII). Head-motion similarity for ASD group
did not correlate with ADI-R/ADOS similarity (Mantel
test r 5 20.078, P 5 0.732) and did not correlate with
median scaled inclusivity similarity of each subnetwork.

DISCUSSION

We studied with fMRI how functional subnetwork struc-
ture differs in individuals with ASD using novel graph
theoretical tools applied to whole-brain functional net-
works without a priori assumptions on the nodes or links.
We showed that ASD is characterized with significant
reorganization of ventro-temporal-limbic and default-
mode functional subnetworks. This reorganization, which
we here assume is the end product of a developmental
process, is coupled to a mixture of micro-level hypo- and
hyper-connectivity and the mesoscopic analysis clarifies
the micro-level results. Moreover, the pattern of altered
connectivity in the VTL subnetwork was significantly asso-
ciated with the degree of autistic symptoms, both in par-
ticipants with ASD and controls. Altogether our findings
suggest that aberrant organization of brain subnetworks
may underlie social impairments in ASD.

We assumed that the drama movie drives functional
network activity that cannot be easily seen during resting
state, thus allowing us to elucidate functional network

Figure 4.

Node-level and link-level regression with autism quotient

scores. (A) Map of nodes whose strength values correlate

with individual AQ scores. (B) Summary plot of link weight

correlations with individual AQ scores. Only the strongest

positively and negatively correlated links are reported (links in

the 1st percentile). For a full summary connectivity matrix, see

Supporting Information Figure S3. Each element of the pairwise

connectivity matrix indicates the average of the correlations

between AQ and link weights for all the links between a pair

of anatomical regions. The main diagonal shows the average

correlation for links within the respective region. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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differences between NT and ASD subjects under condi-
tions reflecting lifelike social environment. In the NT sub-
jects, we observed subnetworks (Fig. 2 and Supporting
Information Fig. S2) closely resembling in composition
those disclosed during resting state by other clustering
methods (multidimensional clustering in [Thomas Yeo
et al., 2011], infomap graph clustering in [Power et al.,
2011], independent component analysis in [Smith et al.,
2009]), supporting the validity of our analysis approach.
There were, however, novel differences in the subnetworks
of NT subjects, as compared with resting state studies. The
VTL subnetwork, consisting of amygdala, hippocampus,
parahippocampal cortex, fusiform gyrus, inferior temporal
gyrus, temporal pole, thalamus, posterior aspects of orbito-
frontal cortex, and striatum in the NT subjects is not con-
sistently found in experiments using only a resting state
condition (for a discussion [Moussa et al., 2012]). Hence,
we likely found the VTL subnetwork due to the use of a
stimulus that engages social cognition and emotional proc-
essing in the subjects. This is also in line with studies
showing different and more reliable brain connectivity in
subcortical and limbic areas during task vs. resting-state
conditions [Mennes et al., 2013].

Notably, we observed a number of significant differen-
ces in the composition of subnetworks between ASD and
NT subjects (Fig. 2). In general, participants with ASD
showed lower intersubject similarity of subnetwork struc-
ture (Table I), likely reflecting the heterogeneity of the
disorder [Hernandez et al., 2015] and idiosyncratic connec-
tivity organization in ASD [Hahamy et al., 2015]. The most

TABLE II. Node level results

Abbreviations (Fig.4) MNI; x MNI; y MNI; z

AQ vs. node strength;
(Spearman correlation) Corrected P value

ACG/SFGmed(L) 210 50 14 20.63859 0.0075
ACG/SFGmed(L) 210 56 26 20.61394 0.0097
STG 50 24 210 20.59373 0.0124
PCUN/SPG 8 246 56 20.59237 0.0125
SFGdor 222 56 20 20.57764 0.0142
ACG/SFGmed 210 56 14 20.5749 0.0148
SFGdor 20 62 14 20.56566 0.0163
V5/MT 32 282 8 20.54922 0.0194
ACG/SFGmed(L) 210 56 20 20.54888 0.0195
TPO(R) 32 8 228 20.53998 0.0220
FFG/LING(L) 222 264 210 20.5345 0.0236
PHG/TPO(L) 228 2 230 20.52217 0.0268
FFG(R) 26 270 210 20.51361 0.0285
ACG(R) 8 50 8 20.49889 0.0328
IPL(R) 14 270 50 0.4756 0.0393
IFG(L) 252 26 14 0.50984 0.0296
SFGdor(R) 20 32 44 0.51704 0.0283
PCG 2 240 26 0.5773 0.0143
PCG 24 234 32 0.60024 0.0111

The table reports the voxels whose node strength correlates positively or negatively with AQ (Spearman correlation) and their Montreal
Neurological Institute coordinates.

Figure 5.

Results from the ABIDE dataset. Mantel test showing association

between VTL subnetwork structure and autistic symptoms in

the ABIDE replication dataset. Each dot is a pair of ASD sub-

jects (351 pairs for 27 subjects) showing their VTL subnetwork

similarity with median scaled inclusivity and behavioral similarity

with ADI-R and ADOS score vectors. Effect size is reported as

correlation value and P value was computed with permutations.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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robust group differences were observed in the VTL, DM,
and DA, as well as in subnetworks comprising visual and
auditory areas.

Specifically, the coherent subnetwork activity between
medial-frontal, inferior temporal, and subcortical struc-
tures is broken down in ASD subjects. Reconfiguration of
the VTL subnetwork significantly correlated with severity
of autistic symptoms as indexed by subject pairs with more
similar VTL composition having similar AQ subscale scores
(Fig. 3; for summary of full connectivity matrix, see Sup-
porting Information Fig. S3). This important finding links
the brain functional subnetwork-level differences to autistic
symptoms, tentatively suggesting that the difficulties ASD
individuals experience in social cognition are associated
with an abnormal VTL subnetwork composition.

Notably, intersubject similarity of AQ score and VTL
structure was also significant within the NT population
(Fig. 3). In the healthy population, high AQ has been
reported to be associated with lower prosocial behavior
[Jameel et al., 2014] and with difficulties in voice process-
ing [Yoshimura et al., 2013]. The connectivity between
some of VTL areas is also known to be related to personal-
ity traits [Kennis et al., 2013]. When considering the repro-
ducibility test of this finding with the ABIDE dataset,
despite the differences of scanning paradigm and diagnos-
tic tools, similarity of VTL was also correlated with ADI-
R/ADOS intersubject similarity. This result points to a
shared pattern between different autistic individuals in
VTL subnetwork, independently of the presence or absence
of stimulus. Although the complex stimulus was necessary
to identify the VTL subnetwork, the resting-state result ten-
tatively suggests that there might even be subtle abnormal-
ity in the underlying structural connections. However,
when looking at subnetwork group differences in the rest-
ing state dataset, VTL subnetwork similarity was compara-
ble between the two groups from the ABIDE dataset. This
could be related to the lack of engaging stimulus in the
resting paradigm, which gives less consistent connectivities
in subcortical areas [Mennes et al., 2013]. Future studies
should further assess whether VTL subnetwork is strongly
present only during stimulus processing rather than rest,
by measuring the same subjects in with both paradigms.

While VTL subnetwork differences between NT and
ASD subjects have not been previously investigated per se,
these brain regions and their connectivity are known to be
fundamental in ASD for a long time [Courchesne, 1997].
Regions in VTL subnetworks are part of a larger distrib-
uted network involved in social cognition with previously
reported hypo-connectivity in ASD involving FFG, amyg-
dala, anterior hippocampus, insula, MFG, TPO, PCG, pre-
cuneus, Broca’s area, the posterior superior temporal
sulcus and temporo-parietal junction [Gotts et al., 2012;
Kennedy and Adolphs, 2012]. Impairment in the “social
motivation” circuit—amygdala, striatum, and orbito-
frontal cortex—has also been hypothesized to be a core
feature of ASD [Chevallier et al., 2012]. Specifically, in the

striatum, caudate has been reported to be less connected
with other subcortical areas in high functioning ASD
adults than in NT ([Turner et al., 2006]; see also [Zhou
et al., 2014]) and recent findings in genetic studies are
showing how ASD genes have expression patterns highly
specific to striatum [Willsey and State, 2015]. Our results
also seem to point to the striatum role in ASD subnetwork
reconfiguration, separating from amygdalas and other VTL
areas (Fig. 2). Finally, when considering the group differ-
ences in DM and DA composition, we corroborated previ-
ous observations obtained with other functional network
analysis methods [Just et al., 2012; Kennedy and Courch-
esne, 2008; Lynch et al., 2013; Rudie et al., 2012]. As some
of the areas of DM have been reported to be involved in
social cognition, experienced emotions, and self-referential
processing in healthy subjects [Gusnard et al., 2001; Mars
et al., 2012; Nummenmaa et al., 2012] and in individuals
with ASD [Gotts et al., 2012; Kuzmanovic et al., 2014]. The
abnormal parcellation of the DM in ASD in the present
study could be hypothesized to lead to problems in such
functions, which is something that should be tested in
future studies.

In addition to the subnetwork-level differences, several
micro-level (i.e., node- and link-level) differences were
observed within and between brain areas (Fig. 4), consist-
ent with previous studies showing, for example, higher
node degree for ASD in SFGdor [Di Martino et al., 2014]
and precuneus [Itahashi et al., 2014] as well as lower node
degree for ASD in superior temporal gyrus and ACG
[Itahashi et al., 2014]. In addition, differences were
observed in some nodes (left IFG, FFG, PHG) that are part
of the VTL subnetwork in NT subjects. Importantly, the
subnetwork-level analysis provides information that is
not available at microscopic level. For example, the
subnetwork-level analysis shows how the reduced connec-
tivity of ACG (at node level inspection) in subjects with
high AQ is due to ACG loosing its connections with the
salience subnetwork and joining into a larger subnetwork
involving SFGdor, Broca’s area and middle frontal gyrus in
ASD (see Fig. 2). In a similar fashion, reduced connectivity
in subcortical areas, FFG, and PHG does not simply mean
disconnection in ASD: While a subset of VTL nodes in
ASD isolates itself (ITG, FFG, light blue subnetwork Fig. 2
right hand side), striatum and thalamus form an anoma-
lous subnetwork with PCG, precuneus and superior parie-
tal cortex. Thus, simply looking at the connections each
node has with other nodes (i.e., micro-level inspection)
does not reveal the bigger picture of how the pattern of
connectivity of that node is altered with respects to other
nodes in the network, thus changing the functional role of
the node—as well as the fine functional properties of the
subnetworks that the node abandons and joins. To reveal
and examine these effects and to resolve the micro-level
mixed hypo- and hyperconnectivity findings, mesoscopic-
level inspection of whole-brain network structure between
NT and ASD subjects was needed.
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CONCLUSION

In conclusion, our results suggest that looking at the
composition of brain functional subnetworks provides fur-
ther insights to the mixture of hypo- and hyper-
connectivity reported across previous ASD studies.
Anomalies in VTL subnetwork are associated with gravity
of autistic symptoms, even within the NT group and even
when considering resting state paradigm and different
diagnostic tools. Using engaging stimuli and considering
all intersubject variance of subnetworks might reveal con-
sistent patterns also in other spectrum of disorders, like
schizophrenia, that are characterized by high heterogeneity
of symptoms and are related to neuronal connectivity dys-
function [Mar�ın, 2012].
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